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O N E - D I M E N S I O N A L  M O T I O N  OF AN E M U L S I O N  W I T H  S O L I D I F I C A T I O N  

A.  G.  P e t r o v a  and V .  V .  P u k h n a c h e v  1 UDC 539.69 

A mathematical model is proposed for the process of solidification of an emulsion with a 
small disperse-phase concentration moving under the action of thermocapillary forces and 
microgravity. The first-approximation problem that arises when solutions are represented as 
asymptotic series in a small parameter is examined. Conditions for the partial and complete 
displacement of the impurity from the solidified part and conditions for the accumulation of the 
impurity in the solidified mixture are obtained. The problem of producing a composite with a 
specified disperse-phase distribution is considered. Exact solutions that adequately reflect various 
features of the qualitative behavior of the general solution under different input data are obtained 
and examined. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

1.1. Bas ic  Assumpt ions .  (1) The one-dimensional motion of an emulsion under the action of 
thermocapillary forces and microgravity is described by the mathematical model proposed in [1]. The required 
quantities are the temperature T and concentration of the disperse phase c. After they are determined, the 
rate and pressure are obtained from additional equations. 

2. The process of solidification is described within the framework of the classical Stefan problem ignoring 
the jump in density during solidification. 

3. The solidified matrix is immovable, and hence, the volume average rate of motion of the mixture is 
equal to zero. 

Under the above assumptions, the temperature of the mixture and the concentration of the disperse 
phase of the liquid mixture are defined by the equations 

cO--~ c + c(1 - c) L - ~ x + K g  =0, 

(1.1) 

cO cOT 
= km -~~x ( ( 1 -  M c ) -3-'~x ) . 

Here M = 3( k,~-ka)/(2k,n + kd), K = 2R2(pd--p,~)(ttd+ ttm)/(3tt,,~(2#m + 3#a) ), and L = 2Rk~attm/( (2#m + 
3#a)(2km +kd)), where p~, p,,~, Ad, Am, #d, ttm, kd, and km denote the density, heat capacity, dynamic viscosity, 
and thermal conductivity in the disperse (subscript d) and carrier (subscript m) phases (these coefficients are 
considered positive and constant), R is the radius of disperse particles, a is a positive constant that is the 
coefficient of the linear dependence of surface tension on temperature, and 9 is the constant acceleration of 
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microgravity, which is considered positive if the acceleration of gravity is directed toward higher temperature; 
otherwise, it is negative. 

In the liquid matrix with solidified inclusions, there is no thermocapillary effect, and, therefore, in 
Eq. (1.1), one should set L = 0. Finally, in the solid matrix there are neither the thermocapillary effect nor 
Archimedes force, and, hence, L = Kg  = O. The conditions on a line of strong discontinuity have the form 

[clD = [c(Kg + LT,)(1 - c)], [T] = 0, 
(1.2) 

[U]D = [(PdAd -- pmA,~)c(1 -- c)(Kg + LT~)T] - [k,,,(1 - Mc)Tx],  

where [.] denotes the difference between the function values on different sides of the discontinuity line, the 
jump in internal energy [U] is considered constant and equal to 7, and D is the velocity of the phase boundary. 

We introduce the "reduced concentration" C = c/~, where e is the maximum value of the initial 
concentration (~ << 1). The new function will be called by the former name, and its values are no longer 
restricted from above by unity. 

Equations (1.1) and (1.2) become 

0-'~ C + C(1 - r L ~ x  + K g  = O, 

0 OT 
= k m ~ x ( ( 1 - M ~ C ) ~ x  ) ,  

and the strong discontinuity conditions are 

[ClD = [C(gg + L T ~ ) ( 1  - e C ) ] ,  [ T ]  = 0 ,  

[V]D = [(P~s -- p ~ m ) c C ( 1  - e c ) ( g g  + LT~)T] - [km(1 - MeC)T~].  

1.2. Add i t iona l  A s s u m p t i o n s .  The assumption of low disperse-phase concentration gives ground for 
linearization, which is the main method of studying the problem in the present work. Since thermal conduction 
as a first approximation (~ -- 0) is determined by the parameters of the carrier phase (matrix), we assume 
that: 

- -  The boundary of solidification of the matrix x = sin(t) is a Stefan boundary for the thermal problem, 
and the conditions of strong discontinuity for the temperature and concentration are satisfied on the boundary; 

The isotherm T = T d, where T d is the solidification temperature of the disperse phase, can be a 
strong discontinuity line only for the disperse-phase concentration Ix = sd(t) is treated as the equation of this 
isotherm]; 

- -  The heat flux is directed toward increasing the x coordinate. 
Let the solidification temperature of the matrix T m be lower than the solidification temperature of 

the disperse phase T d. The concentration of the solid disperse phase in the solidified matrix [the region 
x < sin(t)] is denoted by CS(x , t ) ,  the concentration of the solid disperse phase in the liquid matrix (the 
region st,  < x < sd) is denoted by CSt(x,t), and, finally, the concentration of the liquid disperse phase in the 
liquid matrix [the region x > sd(t)] is denoted by Ct(x,  t). As a result of expansion in the small parameter ~, 
the problem of determining the functions of the first approximation CSt(x, t), CZ(x, t), and CSt(x, t) takes the 
form 

C z + C ~ L -~x § K g  = O, x > sd(t), 

0 0 
CSZ + w-(CStKg)  - O, 

Ot UX 
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_ d~d ( OT l ) 
CO C s=O,  x < s m ( t ) ,  - - ~ ( C  z C s~)=C t L ~ + K s  - C S t K g ,  
COt 

(~.3) 

dsm (CSt - CS ) = CSlKg ' x = sin(t). 
dt 

The temperature Tt(x,  t) in the liquid mixture and the position of the free boundary sin(t) are tentatively 
obtained by solving the classical Stefan two-phase problem 

z t OTt I CO2Tl OT ~ 0 2T~ 
P'~)'' Cot = k~ Cox2 ' ~ > ~ ( t ) ,  p~:~ Cot - k~ Ox~ ' ~ < ~m(t), 

ds ~ aT~ t OTt 
Tt  = TS = Tin' d---[ 7 = k m  COX km 60x x = Srn(t) 

subject to certain boundary and initial conditions, for example, 

T S ( O , t ) = f s ( t ) < T  m, T l ( ~ , t ) = O ,  T S ( x , O ) = q a S ( x ) < T  m, x e ( O , s ( t ) ) ,  

(1.4) 

(1.5) 
T~(x, 0) = ~t(~)  > T ~ ,  x e (~(t), ~ ) ,  , (0 )  = s0. 

The boundary x = sd(t) is defined as the isotherm Tt(sd(t), t) = T d. 
We now assume that  the solidification temperature  of the matr ix T m is higher than the solidification 

temperature of the disperse phase T d. Since, in the solidified matrix, the disperse inclusions are immovable 
even if they have not solidified, the solidification boundary of the disperse phase x = sd(t) is no longer the line 
of concentration discontinuity. The problem of determining the disperse-phase concentration in the solidified 
matrix CS(x, t) and the disperse-phase concentration in the liquid matrix Ca(x, t) consists of the equations 

)) aS + ~z Cl L -~x + Kg = 0, z > sin(t); (1.6) 

~nd the condition 

__0CS at = 0, x < ~ ( t )  (1.7) 

a T  t ) 
d~mdt ( c t  - C')  = C z L ~ + K~  , x = ~r~(t). (1.8) 

t h e  functions Tt(x, t) and s,n(t) are also solutions of the classical two-phase Stefan problem (1.4), (1.5). 
For the systems described, we formulate the following two problems: the problem of determining the 

:oncentration distribution in the solidified part from a specified initial distribution of the concentrations 
3st(x, O) = C~t(x) > 0 and eL(x,O) = Cto(X) > 0 in the liquid matr ix  (called a direct problem), and the 
3roblem of determining the initial concentration distribution in the liquid matrix from a specified concentration 
=listribution C~(x) >/0 in the solidified part (arbitrarily called an inverse problem). We search for a classical 
~olution of the formulated problems with nonnegative restricted functions C s C sz, and C t. For simplicity, it 
s assumed that  the functions Cto(x) and C~(x) are specified on semi-infinite intervals. 

2. C O N D I T I O N S  OF P A R T I A L  AND C O M P L E T E  D I S P L A C E M E N T  OF T H E  I M P U R I T Y  

We are interested in the process of "oriented solidification," i.e., solutions of the Stefan problem that 
;atisfy the inequality (dsm/dt) (t) > 0 for all values of t ime t. This requirement is easily ensured in terms of 
,he input data of the Stefan problem [2]. In this case, by virtue of the maximum principle, T~(z, t) >t 0 and 
r L ( x ,  t) ~< 0 (i = s, 0 ,  and, hence, (d~a/dt) (t) t> 0 for all t imes t. 

We consider the relation of the disperse-phase concentrations on different sides of the boundary of 
;olidification of the matrix in the problem with one front (the case T m > Td). Taking condition (1.8) into 
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a 

t( 
sin(0) x(0) 

b 

sin(O) x(O} 0 x 0 x 

1 

account, we see that a necessary condition for the unique solvability of the direct and inverse problems is the 
satisfaction of the inequality 

ds~ L OTt 
dt ~ -~x (sin(t), t) + Kg,  t > 0, (2.1) 

which ensures the "right" slope of the characteristics z = x(t) determined from the Canchy problem 

dx OT z 
d--~ = L ~ (X(T), r) + Kg, 0 <~ ~" < t, x(t) = sin(t), (2.2) 

and nonnegativity of the concentrations on the solidification boundary. Inequality (2.1) implies that the rate 
of transfer of the impurity in the liquid due to the thermocapillary effect and microgravity should not be 
higher than the rate of motion of the solidification boundary. Then, in the case 

L OTl (sin(t), t) + Kg >1 0 

(Fig. la), the inequality CS(x) ~ CZ(x, s~nl(x)) holds, which implies that the impurity is displaced into the 
liquid phase. If 

L OTz (s~(t), t) + Kg < o 

(Fig. lb), CS(x) > CZ(x, sjnl(x)), i.e., the impurity is taken by the solidified part. 
In the case of satisfaction of the identical equality 

ds,,, OT l . 
dt = L "~x (s,n(t), t) + gg ,  

the impurity is completely displaced from the solid phase, i.e., the direct problem can have only a trivial 
solution, and the inverse problem loses sense. 

Finally, we consider the case 

ds,~ OT t 
dt < L "~x (sin(t), t) + Kg,  t > 0, 

where the rate due to the thermocapillary effect and microgravity exceeds the rate of motion of the 
solidification boundary of the matrix. Then, by virtue of (1.8), in addition to CS(x) =- O, we have Ct(s(t), t) - 0 
for M1 times t. 

We note that the conditions for the "right" slope of the characteristics for problem (1.3) have the form 

/ds~ ~,'g~ ~> 0. as,~ >~ gg,  ~(as~at - LThsd( t ) , t ) -  ~:g) ~ at -- / 
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3. SOLVABILITY OF T H E  P R O B L E M S  

(1.8). 
Let us find sufficient conditions for the solvability of the direct and inverse problems for system (1.6)- 

S t a t e m e n t  3.1. If 

dsm OT 1 dsm . . 
- A  - - ~  (t) <<. L ~ (sin(t), t) + gg  <~ a - - ~  (t) (3.1) 

for all times t and some constants A and a that satisfy the conditions A >/0 and 0 ~ a < 1, and there is a 
nonnegative constant N such that for all times t, 

t 

i(L OT. Kg) OT, dr N, -~x  (Sin(T), ~') T ~ X  (Sin(t)(1 -- a) -t- s,(~-)a, ~-) 
0 

then the solution CS(x) of problem (1.6)-(1.8) with the initial condition Cl(x,O) = CZo(X) > 0 Ix > sm(0)] is 
nonnegative and bounded from above by 

I ! max Cto(x)exp { n k ~ ' ( ( ~ l ( x ) -  T m) + g)pmAm}(1 + A). 

S t a t e m e n t  3.2. Let condition (3.1) be satisfied. Then, the solution Ct(x,O) = CZo(X) of 
problem (1.5)-(1.8) with the condition CS(x,s~nl(x)) = C~(x) is nonnegative and bounded from above by 
max C~(x) exp { Lk~l Nplm)Jm} /(1 - a). 

To prove Statements  1 and 2, we note that ,  by virtue of (1.8), we have 

d 

and by virtue of Eq. (1.6), we obtain 
t 

Cl(sm(t), t) = Cl(x(O), O) exp ( - / L 02Tl--~-x2 (x(v) ,T)dv} ,  

0 

where the characteristics X(T) are determined from problem (2.2). Taking into account the equality 

d--~d Ta(z(r), r) = ~xO Tt(x(r), r)  ~r+-~rOz 0 Tt(z(r), ~.), 

the first of Eqs. (1.4), the inequalities T~(x,t) >1 0 and T~z(x,t ) <~ O, and the maximum principle for Ct(x,t), 
we obtain what is required. 

R e m a r k  3.1. We consider the limiting case of the identical equality in condition (2.1), i.e., the situation 
where the line sin(t) is a characteristic. Then, in order that  a solution of problem (1.6)-(1.8) with the initial 

conditions Ct(x, O) = CZo(X) > 0 [x > sin(0)] be bounded, it is necessary that  the integral f T~({, Sml(~)) d{ 
s,n(O) 

be bounded uniformly on z. In this case, the impuri ty is completely displaced from the solid phase. The inverse 
problem in this case loses sense. We note that ,  this rather severe constraint is not satisfied for self-similar and 
traveling wave regimes of solidification. 

As noted above, the condition of oriented solidification can be formulated in terms of the input data 
of the Stefan problem (1.4), (1.5). Comparison of the solution of the Stefan problem with an appropriate 
traveling wave solution makes it is possible to formulate sufficient (rather rough) constraints on the input 
data of the general problem under which the conditions of Statements 1 and 2 are satisfied, and both the 
direct and inverse problem have a classical solution. At the same time, the qualitative behavior of the solution 
of problem (1.6)-(1.8) is fairly well represented by the cases where the functions T z and sm are taken from 
a traveling wave solution or a self-similar (for g = 0) solution of the corresponding Stefan problem. We note 
that, in this case, the sufficient conditions of solvability formulated in Statements 1 and 2 are rather exact. 
We study these solutions. 
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4. SOME S P E C I A L  S O L U T I O N S  

4.1. T r a v e l i n g  Wave.  Let CZ(x,t) --* Cor as x --* c~. Then, problem (1.4), (1.6)-(1.8) has a solution 
of the form 

Tt(x,  t) = AL(1 - exp {-Va~;(x - Vt)}) + T*, 
(4.1) 

TS(z, t) = AS(1 - exp { -VmS(x  - Vt)))  + T*, s(t) = Vt; 

C (V - K g ) e x p  {V tx} CS(z,t)  = C (1 Kg'  
Ct(x ' t )  = ( V -  K g ) e x p { V ~ J x )  - Bexp{V2~J t}  ' - V J '  (4.2) 

where ~i = pmAm/k m i  i t (i = s, l), B = LVAtzfl ,  the constants A t and A s are related by the Stefan condition 
from (1.4), V is an arbitrary positive constant which is not equal to Kg, and a nonnegative solution of problem 
(1.6)-(1.8) of this form exists if and only if V >1 B + Kg [condition (2.1)]. We note  that  the solution written 
above corresponds to 

Coo(V - g g ) Y e x p  {Vzflx} c'(x,o) = 

In the limiting case V = B + Kg,  where the solidification boundary is a characteristic, only the trivial solution 
C z = C s _~ 0 is possible. 

R e m a r k  4.1. In the absence of microgravity (g = 0), formulas (4.2) take the form 

CZ(z, t) = c o o y  exp {V Zz} 
Vexp  { V M x }  - Bexp{V2mZt} ' CS(x,t) = C ~  

and give a solution of the problem in the case V > B. 
R e m a r k  4.2. We note that  in the case Kg + B >~ O, i.e., if the acceleration of microgravity is directed 

similarly to the temperature gradient,  or it is directed in the opposite direction but  the rate of transfer due 
to microgravity does not exceed in magnitude the rate due to the thermocapillary effect, the impurity is 
displaced into the liquid, i.e., C~(Vt, t) >t Cs(Vt).  In particular, the impurity is displaced into the liquid in 
the absence of microgravity. 

In the case Kg + B < 0, i.e., if the acceleration of microgravity is opposi te  to the direction of the 
temperature  gradient, and the rate of transfer due to microgravity is smaller in magni tude  than the rate due 
to the thermocapillary effect, the impuri ty is displaced into the solid, i.e., CI(Vt,  t) < Cs(Vt).  

4.2. G e n e r a l  S o l u t i o n  of  t h e  T r a n s f e r  P r o b l e m  in t h e  Case  w h e r e  t h e  S o l u t i o n  of  t h e  
S t e f an  P r o b l e m  is a T r a v e l i n g  Wave .  Let the solution of problem (1.4) have the  form (4.1). Then, the 
general solution of Eq. (1.6) in the case V >1 B + Kg [condition (2.1)] is given by 

( - S  + (V - Kg)exp {V Z(x - vt)}),   >vt, Cl(x, t) exp{ g~el(x K g t ) } F  
% 

where F(z)  is an arbitrary smooth function for z > V - B - Kg, determined in the  direct problem from the 
initial conditions Ct(x,O) = Cto(x) > 0 [x > sin(0)] by the formula 

l /  1 z + B  F(z)  - V__- Kg C O \ In 
z + B ~ V -  Kg]" 

In this case, the distribution of the impuri ty in the solidified part is obtained from conditions (1.7) and (1.8): 
CS(x) = CZ(x ,x /V)  (1 - (B + Kg) /V ) .  In the case of the inverse problem, F(z )  is determined from the 
condition CS(x) = C~(x) by the formula 

F ( z ) =  V c s ( i  l z )  
z V - K g ) M l n  V - K g - B  

Remark 4.2 of the relation between the concentrations on the sides of the solidified and liquid regions 
at the boundary is valid in this case too. Figure 2 shows the concentration profile for the solid (region 
0 < x < 2 cm) and liquid (region x > 2 cm) regions at a t ime t = 2 sec for an A1-Pb emulsion with an 
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initial profile Co = 0.006 under the conditions of displacement of the impurity into the liquid (Fig. 2a) and 
accumulation of the impurity by the solid (Fig. 2b). 

In the limiting case V = Kg 4- B, the concentration in the solid phase CS(x) = O, and the solution 
CI(x, t) with constant initial distribution Cl(x, 0) = Co ~ [z > sin(0)] increases without limit at the boundary: 
Cl(Vt, t) = CJo exp {Va@Bt}. This can be treated as the linearization effect; in the same limiting case for the 
nonlinearized problem, the concentration in the liquid approaches unity without bound. 

4 . 3 .  Sel f -S imi la r  Solu t ion .  Let g = 0. Then, using the standard self-similar solution of Stefan 
problem (1.4) (written, for example, in [3]) with the conditions TZ(r t) = Too and TS(0, t) = T ~ we obtain 
a self-similar solution of problem (1.6)-(1.8) that satisfies the condition C t ~ Coo as x -+ c~: 

oo t 

C ~ = Coo exp - ~/32/2 - LT~ d( (~ >~ 1). (4.3) 

Here ~ = x/(l~yrD is a self-similar variable and/~ is a root of the equation 

ks OTS z aT~ 
= a r  (1)  - 

Formula (4.3) is meaningful only in the case of rigorous positiveness of the denominator of the integrand 
for ( /> 1. For this, apparently, it suffices to require satisfaction of the inequality /32/2 > LT~(1), which 

corresponds to condition (2.1) and can be expressed in terms of the input data. The maximum value of C ~ is 
reached at the boundary ~ -- 1: 

cl(1) = Coo exp { - 

In this case, C" - const = C/(1)(1 - 2LT~(1)/~ 2) < Cz(1). Moreover, it is clear that C" < Coo. 
Figure 3 shows two concentration profiles - -  the solid and dot-and-dashed curves - -  for A1-Pb emulsion 

for various times; both profiles correspond to Coo = 0.006 and the position of the front x = 2 cm. The profile 
shown by the solid curve refers to the higher rate of solidification. In this case, the degree of purification of 
the mixture increases and the concentration at the boundary on the side of the liquid increases substantially. 
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4.4.  S o l u t i o n  of  t h e  T r a n s f e r  P r o b l e m  w i t h  Se l f -S imi la r  T e m p e r a t u r e .  First of all, we note 
that if the constraint g = 0 is rejected, by virtue of (2.1), a necessary condition for the existence of a nontriviai 
solution of problem (1.6)-(1.8) with self-similar temperature  takes the form 

~2/2 > LT~(1) + gg~v / t .  (4.4) 

We consider following cases: 
1. g > 0. Apparently, condition (4.4) cannot be satisfied for arbitrary values of t ime t, i.e., C l can be 

only zero for x t>/~x/~, where t* = (82/2 - LT~(1))2/(Kg~) 2. 

2. g < 0. Condition (4.4) is satisfied for fl2/2 >1 LT~(1). If fl2/2 < LT~(1), then, beginning with t ime 

t* = (82/2 - LT~(1))2/(Kg~) 2, condition (4.4) is satisfied but the problem of the existence of a classical 
solution requires additional examination. 

If microgravity is absent (g = 0), the general solution of problem (1.6)-(1.8) with self-similar 
temperature  is written explicitly, in a similar manner as is done in Sec. 4.2. Also, under the corresponding 
conditions, it is not difficult to write solutions of the direct and inverse problems. 

4.5.  G e n e r a l  S o l u t i o n  of  t h e  T w o - F r o n t  P r o b l e m  in t h e  C a s e  w h e r e  t h e  So lu t i on  of  t h e  
S te fan  P r o b l e m  is a T r a v e l i n g  Wave.  Let, in problem (1.3), Tt(x,  t) = At(1 - e x p  { - Y a ~ t ( x -  Yt)} )+  T d, 
B = LVALzJ > 0, V > B + Kg,  sd(t) = Vt,  and sin(t) = V t  - Vto, i.e., we assume that  the matrix begins to 
solidify at t ime to = (V2aJ) -1 In (1 + (T d - Tm)/AZ). We write a solution that  satisfies the initial condition 
C~(x, O) = Clo =- const (x > 0). Then, we have 

(Y  - S - gg)CZo(Y - Kg)  0 < x < Y t  - Vto, 
CS(x) = ( - B  + V - Kg  + B exp { - V z d ( x  - Kgto)} )V '  

cs (x,t) = ( v -  B -  Kg)C  
- B  + V -  Kg  + Bexp { - V M ( x -  Kgt)}  ' 

max {0, Vt  - Vto} < x < Vt,  

(V - Kg)C~ exp{Vedx} 
CZ(x, t) = - B  exp {V2~ t}  + (V - Kg)  exp {Vz~x}  + B exp { V ~ K g t } '  x > Vt.  

We note that  the presence of the second line of the concentration discontinuity and the intermediate 
layer, which is a liquid matr ix  with solidified inclusions, has little effect on the  qualitative behavior of the 
solution for the liquid emulsion and completely solidified region. 

This work is supported by the INTAS (Grant No. 94-529). 

R E F E R E N C E S  

1. 

2. 

3. 

V. V. Pukhnachov and O. V. Voinov, "Mathematical  model of the mot ion of an emulsion under the 
effect of thermocapillary forces and microacceleration," in: Abstracts of  the Ninth European Symposium 
on Gravity Dependent Phenomena in Physical Sciences, Berlin (1995), pp. 32-33. 
A. G. Petrova, "Monotonicity of the free boundary in the Stefan two-phase problem," Dynamics of 
Continuous Media (collected scientific papers) [in Russian], Novosibirsk, 67, 97-99 (1984). 
A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow 
(1972). 

478 


